Die Erde arbeitet wie ein Kraftwerk, indem sie Sonnenenergie in andere Formen umwandelt, die die Winde der Atmosphäre, den Wasserkreislauf, und auch das Leben und die Menschheit auf der Erde erhalten. Diese Umwandlungen folgen den Gesetzen der Thermodynamik, die sowohl die Richtung als auch die Grenzen setzt. Aber Erdsystemprozesse beeinflussen sich auch gegenseitig, sodass man einen Blick auf das Gesamtsystem braucht. In diesem Vortrag zeige ich, dass man allein durch diesen grundlegenden physikalischen Ansatz schon erstaunlich viel vom Erdsystem verstehen kann – über die fundamentalen Rolle von Energie und Entropie, wie Leben den Planeten verändert, aber auch zu angewandten Themen wie dem Klimawandel und warum die Photovoltaik die Technologie ist, die bei weitem den größten Beitrag zur Energiewende liefern wird.
Continue reading ““Kraftwerk Erde: Wie der belebte Planet Energie umwandelt” – Vortrag bei #FasziAstroOnline, heute Abend, 13.01.2022, 19 Uhr, live auf youtube. Mehr Infos im Blog. @MPI_BGC @HdAstro”Author: Axel Kleidon
“Was leistet die Erde und was trägt die Menschheit dazu bei? Nachhaltigkeit aus thermodynamischer Sicht.” zoom-Vortrag, öffentlich, Montag, 13.12.2021, 18:00, tinyurl.com/HM-ForFuture
Im Rahmen der Ringvorlesung “Lectures for Future”, zusammen veranstaltet von der Hochschule München und der LMU, hält Axel Kleidon einen Vortrag zu unserem thermodynamischen Erdsystemansatz und was man daraus für Nachhaltigkeit lernen kann. Der Vortrag ist öffentlich und kann über diesen Zoom Link gesehen werden.
Continue reading ““Was leistet die Erde und was trägt die Menschheit dazu bei? Nachhaltigkeit aus thermodynamischer Sicht.” zoom-Vortrag, öffentlich, Montag, 13.12.2021, 18:00, tinyurl.com/HM-ForFuture”Empowering the Earth system with technology: Using thermodynamics to illustrate the possibility of sustained future growth of human societies
Global warming, biodiversity loss, freshwater shortages, food crisis — there are many reasons to think that the planetary future looks rather grim for human societies. Is there any hope that things can turn out well? It is quite hard to remain optimistic, yet when looking at it from basic physics one can find a way forward. In this book chapter that has just been published online I looked at the issue of sustainability and the role of technology using our thermodynamic Earth system approach.
Continue reading “Empowering the Earth system with technology: Using thermodynamics to illustrate the possibility of sustained future growth of human societies”“Erneuerbare Energien – einfach nachgerechnet” – unser Beitrag zum MINT Festival der @UniJena am Donnerstag. Hier gibt’s weitere Infos und Links. #moMINTmal21 @MPI_BGC
Wieviel erneuerbare Energie gibt es eigentlich? Reicht sie für die Energiewende in Deutschland? Die Antworten liefern einfache, physikalisch-basierte Abschätzungen, bei der das Erdsystem im Mittelpunkt steht sowie die Umwandlungen von der Energie im Sonnenlicht in andere Formen. Und dabei steht etwas Physik, genauer gesagt, die Thermodynamik im Mittelpunkt. Das Ergebnis ist nicht ganz so, wie man es vielleicht erwarten würde. Nämlich, dass es zwar jede Menge erneuerbare Energie gibt, aber auch, dass die Nutzung der Solarenergie mit großem Abstand auf Platz 1 liegt, und nicht die Windenergie. Selbst im nicht ganz so sonnigen, aber oft windigen Deutschland.
Continue reading ““Erneuerbare Energien – einfach nachgerechnet” – unser Beitrag zum MINT Festival der @UniJena am Donnerstag. Hier gibt’s weitere Infos und Links. #moMINTmal21 @MPI_BGC”#vEMS21: Our updates on using #thermodynamics for land-atmosphere interactions, the precipitation response to #globalwarming, and the #windenergy potential in the German bight
With summer coming to a close, we are back to present new insights from ongoing research in extreme precipitation events, offshore wind energy and thermodynamics at the European Meteorological Society Annual Meeting 2021. The event, which will be held online next week (6 – 10 September 2021), focuses on weather and climate research and services for the achievement of the UN Sustainable Development Goals. Read on to find out more details about when and what each of us will be presenting.
Continue reading “#vEMS21: Our updates on using #thermodynamics for land-atmosphere interactions, the precipitation response to #globalwarming, and the #windenergy potential in the German bight”#goldschmidt2021 We contribute our work on dissipative dynamics and frequency distributions in river geochemistry and an update on the thermodynamics of planetary evolution.
Our work on thermodynamics and the Goldschmidt conference on geochemistry – well, that seems like an obvious match. But what we contribute is a little different, and the match is not quite so straightforward. What our perspective adds is (a) a focus on non-equilibrium thermodynamics and disequilibrium, and the processes that generate and dissipate this disequilibrium, and (b) a system‘s view which accounts for the environmental setting as well as the interactions and feedbacks within the Earth as an overarching thermodynamic system. Both of our contributions next week nicely illustrate these points and show how important it is to think „thermodynamics“ beyond its more narrow application to geochemical reactions.
Continue reading “#goldschmidt2021 We contribute our work on dissipative dynamics and frequency distributions in river geochemistry and an update on the thermodynamics of planetary evolution.”The Danish energy island in the North sea: By how much could the atmospheric response to many wind turbines lower the expected yields? Using KEBA to derive a simple, physical answer.
Denmark plans to expand offshore wind energy, and to do so, wants to create an artificial island in the North sea. This plan is based on a cost-benefit analysis, which is based on an estimate of how much electricity generation can be expected from wind turbines in that region. Such wind resource estimates use highly resolved wind fields, turbine characteristics as well as their spatial arrangement, but they typically neglect the atmospheric response to the turbines. Each turbine removes kinetic energy from the atmosphere to generate its electricity, so more turbines remove more energy from the atmosphere, leaving a greater impact behind. What this means is that such estimates typically turn out to be too high (see e.g., here), with a greater bias with greater installed capacity, as we have shown for German offshore scenarios, or in a new study just published. So when a colleague asked me about my opinion, I thought this is a good occasion to use our KEBA approach, which takes the atmospheric response into account, and redo the estimate.
Continue reading “The Danish energy island in the North sea: By how much could the atmospheric response to many wind turbines lower the expected yields? Using KEBA to derive a simple, physical answer.”#vEGU21 Next week we’ll present our work on precipitation scaling, diurnal temperature range, offshore wind, and limits to vegetation productivity based on our thermodynamic Earth system view
Thermodynamics rules the world, as well as the science that we present at this year’s EGU General Assembly, which is, alas, virtual rather than in Vienna. It may not be obvious, and our contributions are spread across different sessions. But in the end, we follow the solar energy as it passes through the Earth system, seeking simple, physics-based explanations to simple phenomena: precipitation scaling with temperature found in observations, the diurnal temperature range across regions and vegetation types, also in observations, limits to offshore wind energy in the North sea and what these imply for renewable energy scenarios, and how the really low efficiency of photosynthesis fits to the notion of vegetation being optimal.
Continue reading “#vEGU21 Next week we’ll present our work on precipitation scaling, diurnal temperature range, offshore wind, and limits to vegetation productivity based on our thermodynamic Earth system view”Why does wind energy become less efficient when used at larger scales? Basic physics explains this effect, starting with a very limited ability of the atmosphere to generate wind energy from radiation, as described in my new review just published.
Wind energy plays an important role in the transition to a carbon-neutral, sustainable energy system and is rapidly expanding. So it is a good time to ask how much wind energy there actually is, whether we get close to the limits anytime soon, and why the efficiency of wind energy must decline when used at larger scales. These are basic science questions: How, and why, does the atmosphere actually generate motion, how much does it generate, and how much of it can at most be used? These questions I address in a review paper just published in which I show that it does not take much physics to answer these.
Continue reading “Why does wind energy become less efficient when used at larger scales? Basic physics explains this effect, starting with a very limited ability of the atmosphere to generate wind energy from radiation, as described in my new review just published.”How close is German wind energy use to its limit? A quick check using climate data shows that it currently represents a few percent of the maximum, but may get quite close to its limits by 2050.
From time to time I get e-mails asking me about what our work on wind energy limits implies for the German transition to sustainable energy. With the substantial expansion of wind power in Germany over the last decade, are we getting close to the limits of wind energy that the atmosphere can provide? I looked at the latest ERA-5 weather data product to get answers, and instead of just e-mailing answers, I wrote this blogpost as well to share the insights.
Continue reading “How close is German wind energy use to its limit? A quick check using climate data shows that it currently represents a few percent of the maximum, but may get quite close to its limits by 2050.”