Which factors make forests cooler: Evaporation or their high aerodynamic conductance? Our paper just published in HESS suggests that it is the latter.

Trees and plants moderate the Earth’s surface temperature. Generally, the cooling effect of vegetation is mainly attributed to the process of evapotranspiration. In our paper just published in HESS, we used observations to unravel the importance of evaporative cooling for short vegetation and forest in shaping diurnal variations in temperatures and found that, actually, it is not only evaporation that keeps the forests cool.

Continue reading “Which factors make forests cooler: Evaporation or their high aerodynamic conductance? Our paper just published in HESS suggests that it is the latter.”

Solar radiation is the main cause for diurnal variations on land. Looking at this slightly differently than how it is normally done helps to better understand observations and evaluate models of the land surface

My former postdoc, Maik Renner, just got his paper published in the Journal of Hydrometeorology, in which he evaluated the performance of common land surface models at the diurnal time scale using FluxNet observations. The evaluation was based on a simple concept that we developed in my group: that solar radiation is the main driver of the diurnal variation of variables that characterize the land-atmosphere system. This sounds trivial. Of course solar radiation is the dominant driver, so what novel insights can be gained from this view? Continue reading “Solar radiation is the main cause for diurnal variations on land. Looking at this slightly differently than how it is normally done helps to better understand observations and evaluate models of the land surface”