#vEMS21: Our updates on using #thermodynamics for land-atmosphere interactions, the precipitation response to #globalwarming, and the #windenergy potential in the German bight

With summer coming to a close, we are back to present new insights from ongoing research in extreme precipitation events, offshore wind energy and thermodynamics at the European Meteorological Society Annual Meeting 2021. The event, which will be held online next week (6 – 10 September 2021), focuses on weather and climate research and services for the achievement of the UN Sustainable Development Goals. Read on to find out more details about when and what each of us will be presenting.

Continue reading “#vEMS21: Our updates on using #thermodynamics for land-atmosphere interactions, the precipitation response to #globalwarming, and the #windenergy potential in the German bight”

#goldschmidt2021 We contribute our work on dissipative dynamics and frequency distributions in river geochemistry and an update on the thermodynamics of planetary evolution.

Our work on thermodynamics and the Goldschmidt conference on geochemistry – well, that seems like an obvious match. But what we contribute is a little different, and the match is not quite so straightforward. What our perspective adds is (a) a focus on non-equilibrium thermodynamics and disequilibrium, and the processes that generate and dissipate this disequilibrium, and (b) a system‘s view which accounts for the environmental setting as well as the interactions and feedbacks within the Earth as an overarching thermodynamic system. Both of our contributions next week nicely illustrate these points and show how important it is to think „thermodynamics“ beyond its more narrow application to geochemical reactions.

Continue reading “#goldschmidt2021 We contribute our work on dissipative dynamics and frequency distributions in river geochemistry and an update on the thermodynamics of planetary evolution.”

#vEGU21 Next week we’ll present our work on precipitation scaling, diurnal temperature range, offshore wind, and limits to vegetation productivity based on our thermodynamic Earth system view

Thermodynamics rules the world, as well as the science that we present at this year’s EGU General Assembly, which is, alas, virtual rather than in Vienna. It may not be obvious, and our contributions are spread across different sessions. But in the end, we follow the solar energy as it passes through the Earth system, seeking simple, physics-based explanations to simple phenomena: precipitation scaling with temperature found in observations, the diurnal temperature range across regions and vegetation types, also in observations, limits to offshore wind energy in the North sea and what these imply for renewable energy scenarios, and how the really low efficiency of photosynthesis fits to the notion of vegetation being optimal.

Continue reading “#vEGU21 Next week we’ll present our work on precipitation scaling, diurnal temperature range, offshore wind, and limits to vegetation productivity based on our thermodynamic Earth system view”

Why does wind energy become less efficient when used at larger scales? Basic physics explains this effect, starting with a very limited ability of the atmosphere to generate wind energy from radiation, as described in my new review just published.

Wind energy plays an important role in the transition to a carbon-neutral, sustainable energy system and is rapidly expanding. So it is a good time to ask how much wind energy there actually is, whether we get close to the limits anytime soon, and why the efficiency of wind energy must decline when used at larger scales. These are basic science questions: How, and why, does the atmosphere actually generate motion, how much does it generate, and how much of it can at most be used? These questions I address in a review paper just published in which I show that it does not take much physics to answer these.

Continue reading “Why does wind energy become less efficient when used at larger scales? Basic physics explains this effect, starting with a very limited ability of the atmosphere to generate wind energy from radiation, as described in my new review just published.”

Does thermodynamics limit photosynthesis? It probably does, but not as you may think

Fig Leaf picturePhotosynthesis is the process which powers life on Earth.  It takes the energy contained in sunlight, uses carbon dioxide, and generates chemical energy that is stored in form of sugars and similar compounds that fuel the activity of the biosphere, including us humans.  And just as any other Earth system process, in doing so it follows the laws of thermodynamics.  But does thermodynamics also restrict the efficiency by which photosynthesis can use sunlight? 

Continue reading “Does thermodynamics limit photosynthesis? It probably does, but not as you may think”